Classroom Activity: Thinking Questions

Suppose you are told that the acceleration function of an object is a continuous function a(t). Let's say you are given that v(0) = 1.

True or **False**: You can find the position of the object at any time t.

2. Let $f(x) = \frac{1}{x^2}$, and F(x) be an antiderivative of f with the property F(1) = 1.

True or **False**. F(-1) = 3.

- 3. If f is an antiderivative of g, and g is an antiderivative of h, then
 - (a) h is an antiderivative of f
 - (b) h is the second derivative of f
 - (c) h is the derivative of f''
- 4. True or False: An antiderivative of a sum of functions, f + g, is an antiderivative of f plus an antiderivative of g.
- 5. True or False: An antiderivative of a product of functions, fg, is an antiderivative of f times an antiderivative of g.
- 6. True or False. If f is continuous on the interval [a, b], then $\int_a^b f(x) dx$ is a number.
- 7. Read the following four statements and choose the correct answer below.

If f is continuous on the interval [a, b], then:

- (i) $\int_{a}^{b} f(x) dx$ is the area bounded by the graph of f, the x-axis and the lines x = aand x = b
- (ii) $\int_{a}^{b} f(x) dx$ is a number
- (iii) $\int_{a}^{b} f(x) dx$ is an antiderivative of f(x)
- (iv) $\int_a^b f(x) dx$ may not exist
- (a) (ii) only
- (b) (i) and (ii) only
- (c) (i) and (iii) only
- (d) (iv) only

- 8. Water is pouring out of a pipe at the rate of f(t) gallons/minute. You collect the water that flows from the pipe between t = 2 and t = 4. The amount of water you collect can be represented by:
 - (a) $\int_2^4 f(x) dx$
 - (b) f(4) f(2)
 - (c) (4-2)f(4)
 - (d) the average of f(4) and f(2) times the amount of time that elapsed
- 9. A sprinter practices by running various distances back and forth in a straight line in a gym. Her velocity at t seconds is given by the function v(t). What does $\int_0^{60} |v(t)| dt$ represent?
 - (a) The total distance the sprinter ran in one minute
 - (b) The sprinter's average velocity in one minute
 - (c) The sprinter's distance from the starting point after one minute
 - (d) None of the above
- 10. Suppose f is a differentiable function. Then $\int_0^x f'(t) dt = f(x)$
 - (a) Always
 - (b) Sometimes
 - (c) Never

Justify your answer.

- 11. **True** or **False**. If $\int f(x) dx = \int g(x) dx$, then f(x) = g(x).
- 12. True or False. If f'(x) = g'(x), then f(x) = g(x).
- 13. Suppose the function f(t) is continuous and always positive. If G is an antiderivative of f, then we know that G:
 - (a) is always positive.
 - (b) is sometimes positive and sometimes negative.
 - (c) is always increasing.
 - (d) There is not enough information to conclude any of the above.

- 14. If f is continuous and f(x) < 0 for all $x \in [a, b]$, then $\int_a^b f(x) dx$
 - (a) must be negative
 - (b) might be 0
 - (c) not enough information
- 15. True or False. If f is continuous on the interval [a, b], $\frac{d}{dx} \left(\int_a^b f(x) dx \right) = f(x)$.
- 16. Below is the graph of a function f.

Let
$$g(x) = \int_0^x f(t) dt$$
. Then for $0 < x < 2$, $g(x)$ is

- (a) increasing and concave up.
- (b) increasing and concave down.
- (c) decreasing and concave up.
- (d) decreasing and concave down.
- 17. Below is the graph of a function f.

Let
$$g(x) = \int_0^x f(t) dt$$
. Then
(a) $g(0) = 0, g'(0) = 0$ and $g'(2) = 0$
(b) $g(0) = 0, g'(0) = 4$ and $g'(2) = 0$
(c) $g(0) = 1, g'(0) = 0$ and $g'(2) = 1$
(d) $g(0) = 0, g'(0) = 0$ and $g'(2) = 1$

18. You are traveling with velocity v(t) that varies continuously over the interval [a, b] and your position at time t is given by s(t). Which of the following represent your average velocity for that time interval:

(I)
$$\frac{\int_{a}^{b} v(t)dt}{(b-a)}$$

(II)
$$\frac{s(b) - s(a)}{b-a}$$

(III) v(c) for at least one c between a and b

(a) I, II, and III

(b) I only

- (c) I and II only
- 19. The differentiation rule that helps us understand why the Substitution rule works is:
 - (a) The product rule.
 - (b) The chain rule.
 - (c) Both of the above.
- 20. One way to compute 1/2 area of the unit circle is to integrate $\int_{-1}^{1} \sqrt{1-x^2} dx$.

Let t be the angle between a radius of the circle and the x-axis. Then the area of the half circle is

(a)
$$\int_0^{\pi} -\sin t \, dt$$

(b)
$$\int_0^{\pi} -\sin^2 t \, dt$$

(c)
$$\int_{\pi}^{0} -\sin^2 t \, dt$$

(d)
$$\int_0^{\pi} -\cos t \, dt$$

21. The area of a circular cell changes as a function of its radius, r, and its radius changes with time r = g(t). If $\frac{dA}{dr} = f(r)$, then the total change in area, ΔA between t = 0and t = 1 is

(a)
$$\Delta A = \int_{\pi(g(0))^2}^{\pi(g(1))^2} dA$$

(b) $\Delta A = \int_{g(0)}^{g(1)} f(r) dr$
(c) $\Delta A = \int_0^1 f(g(t))g'(t) dt$

- (d) all of the above
- 22. The radius, r, of a circular cell changes with time t. If $r(t) = \ln(t+2)$, which of the following represent the change in area, ΔA , of the cell that occurs between t = 0 and t = 1?

(a)
$$\Delta A = \pi (\ln 3)^2 - \pi (\ln 2)^2$$

(b)
$$\Delta A = \int_{\ln 2}^{\ln 3} 2\pi r \, dr$$

(c) $\Delta A = \int_{0}^{1} 2\pi \frac{\ln(t+2)}{t+2} \, dt$

(d) all of the above